20 research outputs found

    Throughput Maximization in Cloud Radio Access Networks using Network Coding

    Get PDF
    This paper is interested in maximizing the total throughput of cloud radio access networks (CRANs) in which multiple radio remote heads (RRHs) are connected to a central computing unit known as the cloud. The transmit frame of each RRH consists of multiple radio resources blocks (RRBs), and the cloud is responsible for synchronizing these RRBS and scheduling them to users. Unlike previous works that consider allocating each RRB to only a single user at each time instance, this paper proposes to mix the flows of multiple users in each RRB using instantly decodable network coding (IDNC). The proposed scheme is thus designed to jointly schedule the users to different RRBs, choose the encoded file sent in each of them, and the rate at which each of them is transmitted. Hence, the paper maximizes the throughput which is defined as the number of correctly received bits. To jointly fulfill this objective, we design a graph in which each vertex represents a possible user-RRB association, encoded file, and transmission rate. By appropriately choosing the weights of vertices, the scheduling problem is shown to be equivalent to a maximum weight clique problem over the newly introduced graph. Simulation results illustrate the significant gains of the proposed scheme compared to classical coding and uncoded solutions.Comment: 7 pages, 7 figure

    Coalition Formation Game for Cooperative Content Delivery in Network Coding Assisted D2D Communications

    Get PDF
    Device-to-device (D2D) communications have shown a huge potential in cellular offloading and become a potential technology in 5G and beyond. In D2D networks, the requested contents by user devices (UDs) can be delivered via D2D links, thus offloading the content providers (CPs). In this work, we address the problem of minimizing the delay of delivering content in a decentralized and partially D2D connected network using network coding (NC) and cooperation among the UDs. The proposed optimization framework considers UDs’ acquired and missing contents, their limited coverage zones, NC, and content’s erasure probability. As such, the completion time for delivering all missing contents to all UDs is minimized. The problem is modeled as a coalition game with cooperative-players wherein the payoff function is derived so that increasing individual payoff results in the desired cooperative behavior. Given the intractability of the formulation, the coalition game is relaxed to a coalition formation game (CFG). A distributed coalition formation algorithm relying on merge-and-split rules is developed for solving the relaxed problem at each transmission. The effectiveness of the proposed solution is validated through computer simulation against existing schemes

    Energy Efficient Communications in RIS-assisted UAV Networks Based on Genetic Algorithm

    Full text link
    This paper proposes a solution for energy-efficient communication in reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV) networks. The limited battery life of UAVs is a major concern for their sustainable operation, and RIS has emerged as a promising solution to reducing the energy consumption of communication systems. The paper formulates the problem of maximizing the energy efficiency of the network as a mixed integer non-linear program, in which UAV placement, UAV beamforming, On-Off strategy of RIS elements, and phase shift of RIS elements are optimized. The proposed solution utilizes the block coordinate descent approach and a combination of continuous and binary genetic algorithms. Moreover, for optimizing the UAV placement, Adam optimizer is used. The simulation results show that the proposed solution outperforms the existing literature. Specifically, we compared the proposed method with the successive convex approximation (SCA) approach for optimizing the phase shift of RIS elements

    Effectiveness of Reconfigurable Intelligent Surfaces to Enhance Connectivity in UAV Networks

    Full text link
    Reconfigurable intelligent surfaces (RISs) are expected to make future 6G networks more connected and resilient against node failures, due to their ability to introduce controllable phase-shifts onto impinging electromagnetic waves and impose link redundancy. Meanwhile, unmanned aerial vehicles (UAVs) are prone to failure due to limited energy, random failures, or targeted failures, which causes network disintegration that results in information delivery loss. In this paper, we show that the integration between UAVs and RISs for improving network connectivity is crucial. We utilize RISs to provide path diversity and alternative connectivity options for information flow from user equipments (UEs) to less critical UAVs by adding more links to the network, thereby making the network more resilient and connected. To that end, we first define the criticality of UAV nodes, which reflects the importance of some nodes over other nodes. We then employ the algebraic connectivity metric, which is adjusted by the reflected links of the RISs and their criticality weights, to formulate the problem of maximizing the network connectivity. Such problem is a computationally expensive combinatorial optimization. To tackle this problem, we propose a relaxation method such that the discrete scheduling constraint of the problem is relaxed and becomes continuous. Leveraging this, we propose two efficient solutions, namely semi-definite programming (SDP) optimization and perturbation heuristic, which both solve the problem in polynomial time. For the perturbation heuristic, we derive the lower and upper bounds of the algebraic connectivity obtained by adding new links to the network. Finally, we corroborate the effectiveness of the proposed solutions through extensive simulation experiments.Comment: 14 pages, 8 figures, journal paper. arXiv admin note: text overlap with arXiv:2308.0467

    Coalition Formation Game for Cooperative Content Delivery in Network Coding Assisted D2D Communications

    Get PDF
    Device-to-device (D2D) communications have shown a huge potential in cellular offloading and become a potential technology in 5G and beyond. In D2D networks, the requested contents by user devices (UDs) can be delivered via D2D links, thus offloading the content providers (CPs). In this work, we address the problem of minimizing the delay of delivering content in a decentralized and partially D2D connected network using network coding (NC) and cooperation among the UDs. The proposed optimization framework considers UDs’ acquired and missing contents, their limited coverage zones, NC, and content’s erasure probability. As such, the completion time for delivering all missing contents to all UDs is minimized. The problem is modeled as a coalition game with cooperative-players wherein the payoff function is derived so that increasing individual payoff results in the desired cooperative behavior. Given the intractability of the formulation, the coalition game is relaxed to a coalition formation game (CFG). A distributed coalition formation algorithm relying on merge-and-split rules is developed for solving the relaxed problem at each transmission. The effectiveness of the proposed solution is validated through computer simulation against existing schemes
    corecore